

NSL Tutorial

Written by Naohiko Shimizu

Version 2015-10-15 Issued by IP ARCH, Inc.

3

Introduction

 NSL is a language developed for logical design. When you learn any

languages, the most effective way is to learn it while actually operating the

sample codes which will operate.

 I hope many designers to wake up to the comfort of logical design by NSL.

Contents

 In this tutorial, you will learn from the basic function of NSL to a little

high-level content while actually operating the sample codes which will

operate. I hope you to understand the operation by actually operating the

samples which will appear in the tutorial having a processing system ready

on hand.

Operation environment

 The operation of this tutorial has been confirmed on NSL Tutorial

LiveCygwin Version 20151006, which Overtone Corporation distributes.

Although this NSL Tutorial LiveCygwin has documented NSLCORE Version

20150929, I expect it to work all right even on the version after this.

 To cover all contents of the tutorial, each program below and its operating

environment are necessary.

 * NSLCORE

 * IcarusVerilog

 * GTKWave

 * SystemC

 Since the environment necessary for LiveCygwin is prepared completely,

downloading and developing it will drastically save the time and efforts to

prepare the individual program.

 After starting up LiveCygwin, the sample codes of this manual are included

in NSL_Tutorial directory just below home, by which directory you can

actually implement the procedures of the compilation and execution

introduced in this manual.

4

Table of contents

Chapter 1 Simple NSL circuit ... 5

Chapter 2 Terminal and Register (component) .. 8

Chapter 3 Numerical representation and integer representation 12

3.1 Floating-point number .. 13
Chapter 4 Conditional execution statement and comparison operation 14

Chapter 5 Transfer and operation, and compound statement 16

Chapter 6 Function (control terminal) and circuit with argument 22

Chapter 7 Order execution, repetition processing circuit by while and for ... 25

Chapter 8 Hierarchical structure .. 33

Chapter 9 Preprocessor ... 39

Chapter 10 Label and goto statement ... 40

Chapter 11 Procedure .. 45

Chapter 12 State machine and state transition ... 55

Chapter 13 Integer variable and temp variable, and structure development. 58

Chapter 14 Parameter ... 62

Chapter 15 Example of floating-point adder ... 65

Chapter 16 Summary of Tutorial ... 74

5

Chapter 1 Simple NSL circuit

 The following example is a circuit described by NSL. Since this example uses the

syntax dedicated for simulation (an element which begins with _), the part will not

be an electronic circuit even if it is compiled. The description is for outputting a

simulation message. Please prepare this circuit as a text file named tut0.nsl.

List 1.1: tut0

 The circuit of NSL is composed of 1 module or more. The module is composed of a

declare statement which describes the input/output specification and a module

statement which is a description of the operation body. Either of the description

contents is enclosed in { }. The declare statement in this example is attached with a

modifier (simulation). The modifier tells a compiler that the module is dedicated for

a simulation, and cannot be a target of the logic synthesis.

 A module needs a module name. The module name is made the same name for

declare statement and module statement. How to use the module being seen from

outside is defined by a declare statement. The module in the example doesn't have

an input/output to outside, but a declare statement for a module definition cannot

be omitted.

 This circuit has one execution statement.

 A semicolon ; is written after an execution statement like a description in C.

(Unnecessary to be written after a compound statement like C.) When multiple

execution statements are described in a module, those execution statements operate

in parallel. To achieve it as hardware, an execution statement of the module starts

an operation as soon as the power supply is turned on, and will continue it

permanently until the power is turned off. Please note that this point is greatly

different from the function of a programming language which operates only when it

was called. However, since the execution statement in the module is only one

_finish("Hello World");

declare tut0 simulation { }

module tut0 {

 _finish("Hello World");

}

6

statement which stops the simulation, the simulation will stop immediately after

the execution starts. (Even if the simulation stopped, the hardware will not

disappear.)

 _finish() is the function which outputs a message to the console, and stops the

simulation. Please note that the function group which begins with _ is dedicated for

a simulation, and cannot become a real circuit. The function and variable dedicated

for a simulation includes the following. These functions and variables include such

function and variable which correspond to VerilogHDL, and the argument is passed

over just as it is when being changed into VerilogHDL.

Table 1.1 Function/variable dedicated for simulation

_finish(string, arg1,

arg2,...)

Simulation finishes after message was output.

_stop(string, arg1, arg2,...) Simulation is stopped after message was output.

_display(string, arg1,

arg2,...)

Message is output.

_monitor(string,

arg1,arg2,...)

Message is output when the terminal designated to

an argument changed.

_readmemh(file, mem) Content of a file is read into a memory as

hexadecimal number.

_readmemb(file, mem) Content of a file is read into a memory as decimal

number.

_random Random number is returned as a value. (32 bits)

_time Simulation time is returned. (64 bits)

_init { } Sequential execution block which can be used only in

a simulation module. 1

_delay(numerical value) Specified numerical clock is delayed in _init block.

 Note: Differing from VerilogHDL developed for simulation, NSL has no way to

describe an internal element of other modules directly as HDL. As a complement to

it, all the signals can be output to the waveform file as a result of the simulation.

 When a module uses an instance of other modules hierarchically, NSL compiler

reads the declare statement, and judges the input/output specification of the

module. Although the declare statement and the module statement are described in

1 _init block executes the operation in sequence after one clock from the start of a

simulation. It is possible to describe in a place not inside other blocks of the simulation

module.

7

the same file in the example, regarding the declare statement and the module

statement as two separated files, and preparing the declare statements of multiple

modules together as a header file are convenient to create a large-scale circuit.

 To execute the simulation, this circuit is compiled with NSL CORE. Although an

example using VerilogHDL compiler Icarus Verilog is shown here, a simulation by

SystemC compiler is also possible performing a synthesis to SystemC.

 This operation creates a file of VerilogHDL called as tut0.v. Next, it will be

compiled with Icarus Verilog.

 Then, execute it.

 The simulation was finished after outputting the message described in NSL,

didn’t it? The line starting from VCD info is the message which Verilog compiler is

providing.

 Synthesis to SystemC is performed by the following command.

 Please note the last option, –split. Since SystemC compiler has the constraint

condition on the declaration order of a module, NSLCORE synthesizes each module

to a separate file, controls the order of include, and satisfies the constraint

condition requested by SystemC. At this time, the simulation test bench will be the

file name in which _sim is added to a specified module name. (tut0_sim.sc in this

case) Although the compilation method of a simulation execution image may change

with where to put SystemC environment, it is shown in case of LiveCygwin as an

example. Since g++ compiler cannot compile a file with the extension of .sc, please

> nsl2sc tut0.nsl -scsim2 -target tut0 -split

> vvp tut0.vvp

VCD info: dumpfile tut0.vcd opened for output.

Hello World

> iverilog -o tut0.vvp tut0.v

> nsl2vl tut0.nsl -verisim2 -target tut0

8

correct the file name to .cpp.

 When a compilation was completed, tut0_sim.exe is made. When this was

executed, it is understood that you can get a similar result like Verilog's simulation.

Info: (I703) tracing timescale unit set: 1 ns (tut0.vcd)

Hello World

Info: /OSCI/SystemC: Simulation stopped by user.

> ./tut0_sim.exe

 SystemC 2.3.1-Accellera --- Apr 30 2014 11:54:49

 Copyright (c) 1996-2014 by all Contributors,

 ALL RIGHTS RESERVED

> cp tut0_sim.sc tut0_sim.cpp

> g++ -I/opt/systemc-2.3.1-debug/include -L/opt/systemc-2.3.1-debug/lib-cygwin -o

tut0_sim.exe tut0_sim.cpp -lsystemc

9

Chapter 2 Terminal and Register (component)

 The following example indicates a logic circuit to be described in NSL. This

example is also dedicated for simulation, and it will not be an electronic circuit even

if being compiled. Please prepare this circuit as a text file named tut1.nsl.

List 2.1: tut1

 In a module statement, it describes the components such as terminal and register,

etc. to be used inside, and the circuit to be achieved. In the example, 8-bit register

count is defined as a component, and the default value is made 0. In addition, the

register is incremented by every clock, and it executes _display statement and

_finish statement at the count value of 100 and 200 respectively.

 When developing a large-scale circuit, each module of a logic circuit is designed

as a synchronous circuit. Then, NSL does not usually write a clock signal explicitly.

Because the signals of clock and reset correspond to the infrastructure in other

words, water supply and sewerage, and the designer need not be conscious of it. As

will be described later, you can also operate the synchronous circuits respectively

by the different clock and reset signals using these signals as needed.

 The hardware designer names a net (wire) in a circuit as an element for the

calculation corresponding to the variable in the programming language. The named

net is called a terminal, and the value is referred by describing the terminal name

in the operation. In NSL, it uses an internal terminal for the arithmetic processing

in a module other than the input and output terminals to connect the inside and the

outside of a module.

As for the net signal, the electrical potential is kept only while being driven,

however, only the output net of a storage element (register and memory) is treated

as a special existence to keep the data because it continues to keep the memory

contents throughout the power supply turned on.

 The following 3 types are the basic components to be developed to the hardware,

which declare in a module in NSL. (The components of instance, integer, variable,

declare tut1 simulation { }

module tut1 {

 reg count[8] = 0;

 count++;

 if(count==100) _display("Hello World");

 if(count==200) _finish("bye");

}

10

and structure, etc. of other module are explained separately.) All the components

are necessary to declare prior to the execution statement. In the declaration, the

element name and bit width are specified following the key word which indicates

the type of component.

1. Register: Register specifies reg register name [bit width]; and, name and bit

width. It is possible to set a default value as = value prior to the semicolon.

When the bit width is omitted, it is assumed to be 1 bit. Register is an

element to memorize a data. The data memorized in a register keeps the same

value until it is changed explicitly.

2. Internal terminal: Internal terminal specifies wire internal terminal name

[bit width]; and name and bit width just like Register. When the bit width is

omitted, it is assumed to be 1 bit. Internal terminal keeps the data only

during the clock cycle in which the transfer was received.

3. Memory: Memory specifies mem memory name [number of words][bit width];

and, name and number of words, bit width. The default value can be set as

mem mm[256][8] = { 3, 2, 5 } . Memory is an element which lines up the

registers in an array, and reads and writes the value by its number.

 A value transfer to an internal terminal is executed within a clock in the

condition of the transfer being described, and a value transfer to a register and a

memory is executed being synchronized with the ris ing edge of the next pulse. On

the software on the premise of a static main memory area, the main purpose of the

type of a variable is to specify the memory area size on a main memory. For

hardware differing from software, it is necessary to specify the physical size of

circuit, and the function of circuit. So, NSL provides the three circuit functions of

register, internal terminal, and memory.

 As the feature of hardware, the described circuits operate concurrently. So it has

prepared a syntax of conditional execution to perform a circuit operation selectively

depending on the condition. The conditional execution includes function, procedure,

and state other than the conditional execution statement. These control

mechanisms adjust the action of circuit operations, and achieve the necessary

functions. Especially for the function, it has a control from the outside to the inside

to cooperate with other modules in addition to the control which is completed inside

the module.

 For a hardware design, a dynamic data change at the moment of a transition of

clock is important. The designer always has to grasp at which clock the data of an

internal component becomes effective.

 NSL has the syntax to support logic simulation in addition to the description to

achieve as a circuit. The modification of simulation written in the declare statement

11

in this example indicates that this module is not a logic synthesis target but is

effective only at the time of simulation. In addition, both _display and _finish are a

built-in function for simulation support.

 This circuit is compiled with NSL CORE to execute the simulation.

This operation creates a VerilogHDL file called tut1.v.

Next, it is compiled with Icarus Verilog.

 Then, execute it.

 What this circuit description outputs is the 2 lines of Hello World and bye.

 Since NSL executes concurrently, the order of outputting messages is produced

from the circuit to produce the order. In the example, the register called count is

incremented by every clock, and switches the statement to be executed by the value.

The programming language executes in the order as described, however such

procedure is necessary because the hardware is based on concurrent operation.

(There also is HDL which has a description for order execution only for a simulation

like VerilogHDL.)

> vvp tut1.vvp

VCD info: dumpfile tut1.vcd opened for output.

Hello World

bye

> iverilog -o tut1.vvp tut1.v

> nsl2vl tut1.nsl -verisim2 -target tut1

12

Chapter 3 Numerical representation and
integer representation

 In NSL, a bit width is defined for numerical representation used for operation.

This is because the bit width of a numerical value has a big effect on circuit scale in

hardware operation. The value of expression, register, and terminal of NSL is

treated as unsigned binary. Since in case of performing an operation which will

have a trivial bit width for the designer, the description to specify the bit width is

redundant, in NSL, an integer can be specified in the part where the bit width can

be estimated. The trivial case means a value transfer to a register and a terminal,

and dyadic operation between the same bit widths. The notation by integer is

assumed to be mainly used for specifying the number of shifts in a shift operation

(since a barrel shifter is generated when all except for integer were given, the

compiler gives warning).

 The numerical representation which specifies a bit count includes the following 7

types.

1. Binary number: The binary number starting from 0b is treated as a numerical

value with a notation bit count.

Example: 0b100

2. Octal number: The octal number starting from 0o is treated as a numerical

value in notation digit x 3 bits.

Example: 0o13

3. Hexadecimal number: The hexadecimal number starting from 0x is treated as a

numerical value in notation digit x 4 bits.

Example: 0x123

4. Binary number: The binary number starting from the numerical value'b is

treated as a numerical value with a bit width indicated by a numerical value.

Example: 4'b1

5. Octal number: The octal number starting from the numerical value'o is treated

as a numerical value with a bit width indicated by a numerical value.

Example: 8'o25

6. Decimal number: The decimal number starting from the numerical value'd is

treated as a numerical value with a bit width indicated by a numerical value.

Example: 8'd20

7. Hexadecimal number: The hexadecimal number starting from the numerical

value'h is treated as a numerical value with a bit width indicated by a

numerical value.

Example: 8'h3

13

 An integer has the range of signed 32 bits in NSL. Also in the part where the

initial value of register and memory, and bit width are presumable, when a

numerical value larger than the number which can be expressed by a 32-bit signed

integer is required, the numerical value expression where the bit count is specified

explicitly is used not an initialization by integer.

 Note: Since the integer is signed to the unsigned value of expression and terminal,

please be careful when both of them are used together for calculation.

3.1 Floating-point number

 Floating-point number may be used to facilitate the description of a circuit

function such as the coefficient calculation of a numerical expression, etc. which are

used for signal processing, etc. Although the floating-point number is not a target of

the logic synthesis, it is evaluated when compiling, and the value can be forwarded

to a terminal, a register and a structure as a constant. In addition, converting it

into integer by _int function, the value can be used in an arithmetic expression as

an integer constant.

 The floating-point number is expressed in the type of the numerical value

sequence including decimal point, and the floating-point number E index. The

following elementary functions are available for the floating-point operation in

addition to the addition, subtraction, multiplication and division.

_real, _int, _acos, _asin, _atan, _atan2, _ceil, _cos, _cosh, _exp, _fabs,

_floor, _fmod, _log, _log10, _pow, _sin, _sinh, _sqrt, _tan, _tanh

 The expression and integer cannot coexist. You have to convert it into

floating-point number using _real, or use only floating-point number.

 When a calculation result is transferred to a circuit, it is transferred as _int

(floating-point notation) when the value is treated as an integer value.

When it is transferred as an IEEE754 format bit string, the expression is described

in the right side of a transfer. The destination has to be 32-bit or 64-bit wire, reg or

structure. In this transfer, the floating-point number is converted into a bit string

in IEEE754 floating-point single precision or double precision. It can be used also

as the initial value of memory, and register, etc.

Example Z = _sin(45./180.); /* To be transferred as IEEE754 format bit string */

Y = _int(_sin(45./180.)*127.)+128; /* To transfer integer of calculation

result */

14

Chapter 4 Conditional execution statement
and comparison operation

 When the value of the register count reached a certain number, it makes the

corresponding action performed in the example. if statement of NSL, like C

language judges an operating condition as false when the expression indicated in ()

is 0, and as true when all except for 0. These operators for comparison are shown.

These operators return 1-bit 1 when the condition is true, and return 0 when false.

Table 4.1 Conditional operator

== True when same value

!= True when different value

> True when left expression is

larger than right expression

< True when left expression is

smaller than right expression

>= True when left expression is

equal to or larger than right

expression

<= True when left expression is

equal to or smaller than right

expression

 A complicated comparison can be performed using logical operator as well as a

comparison operation. The logical operator includes ==, ||, and !. NSL evaluates

every value in parallel. Since this point is different from C language, please confirm

the influence carefully for the function call description with side effects. In addition,

differing from C language, the statement to transfer a value (assignment statement

for C language, and transfer statement for NSL) does not have a value, so it cannot

include a transfer in the expression. Please use the after-mentioned alt statement

when it is necessary to evaluate multiple comparisons setting priorities.

 else clause can be applied to if statement as well as C language.

 You can construct a circuit which has a complicated operating condition by

 if(x > 0 || x<=10) _display("ok:%d",x);

 else _finish("bye");

15

combining if and else. However, a complicated if statement is confusing, which will

be a hotbed of bug. When you think the condition is too complicated, in most of cases,

you can create a visible circuit using any and alt, which are the multidirectional

branched format NSL has.

 if statement is in a special format of the condition execution statement of NSL.

The general format is any statement or alt statement. These statements perform a

multidirectional branched processing to the multiple conditions in the type of

condition: execution statement. These statements can also specify else as condition.

any statement evaluates all the conditions at the same time, and executes all the

statements of which condition becomes true. As for alt statement, the condition is

evaluated from the higher statement, and only the statement which becomes true

first is executed. It shows an example of any statement which performs the same

action as two if statements in the example. Although it is similar to switch

statement of C language, please note that a logical expression is described in the

left of the colon :. In addition, differing from C language, when being consistent

with the condition only 1 statement in the right of the colon : is executed. When it is

wanted to perform multiple actions, the after-mentioned compound statement is

used.

 When alt statement is described, a priority encoder is produced in the hardware

resulting from a compilation according to the operation principle of alt statement.

Since the priority encoder is often a bottleneck of the hardware performance, please

examine whether alt is a really necessary case carefully when creating a circuit

using alt. In addition, a use of else is not also recommended from the same reason

on a performance issue.

 any {

 count==100: _display("Hello World");

 count==200: _finish("bye");

 }

16

Chapter 5 Transfer and operation, and
compound statement

 A value can be transferred to the register and the terminal which are a component

of NSL. When a transfer is received, the terminal and the register have a value with

the bit width. While the register holds a value across a clock, the terminal has an

effective value only during the clock where the transfer has occurred. So, to classify

the two transfers, the transfer symbol to the register (:=) and the transfer symbol to

the terminal (=) are assumed to be different symbols in NSL. The memory which is

the component which stores the price has the same symbol as a register. In addition,

the memory which is a component to store the value has the same symbol as the

register.

 As for a transfer to the register, a change in the value occurs at the beginning of

the clock cycle next to the clock cycle in which the transfer was performed. That is,

the register achieves it by a leading-edge triggered flip-flop.

 An operation can be performed using the value of the register and the terminal.

NSL has the arithmetic operation and the logical operation. The operation of NSL

all produces the results in the same clock.

 The following 3 arithmetic operations are prepared. The division has not

prepared it as an operator because there are many achievement methods, and it

seldom to use an implementation in which the value is returned in 1 clock.

 + Addition between the same bit widths is performed.

 Result will be a value in the same bit width.

 When integer is specified to 2nd term, it is presumed to the bit width of 1st

term.

 - Subtraction between the same bit widths is performed.

 Result will be a value in the same bit width.

 When integer is specified to 2nd term, it is presumed to the bit width of 1st

term.

 * Addition is performed. No limitation on the bit width.

 Result will have the bit width of the sum of 1st term and 2nd term.

 Logical operation has an operation to operate every corresponding bit, and the

other reduce operation to perform an operation in the bit direction of 1 word. The

reduce operation puts a prefix operator in front of the value, and the operation

result will be 1 bit. The operation every bit performs an operation between the same

bit widths, and the bit width as result will not change. Since it is possible to

presume the bit width in the operation every bit, an integer can be used for the 2nd

17

term. The operations other than NOT in the next operations can be used also for

reduce operator. The reduce operation cannot be applied to 1-bit signal.

 & AND

 | OR

 ^ XOR

 ~ NOT

 An example of the operation is shown.

 Please carefully note the difference between the calculation and the comparison

operation. When describing a complicated expression using reduce operation, please

use parentheses appropriately not to be confused.

 Other operations include shift, bit concatenation, bit cutout, repeat, bit width

change, sign extension, and conditional operation.

 >> Logical right shift. Bit width as result does not change. Please make

2nd term integer.

 << Logical left shift. Bit width as result does not change. Please make

2nd term integer.

 { expression , expression, ... } The value where multiple expressions enclosed

with { } are bit-concatenated in alignment sequence is returned.

 Numerical value { expression } The value where the expression was repeated

the numerical value times and concatenated is returned.

 Expression[numerical value1: numerical value2] The value where the

expression was cut out from the numerical value 1st bit to the numerical value

2nd bit is return.

 Expression[expression x] The value where 1 bit of the expression x bit was cut

out from the expression is returned.

 Numerical value '(expression) The value where bit width of the expression

was changed into a width which is indicated by a numerical value is returned.

 Numerical value#(expression) The value where the expression was

sign-extended to a numerical bit is returned.

 if (expression) expression1 else expression2 When the expression is true, the

expression1, and when false, expression2 is returned as the price.

 a = 8'h55 & 170;

 b = |a;

18

 NSL checks the bit count in operation severely. Therefore, the designer may

wants to change the bit count to an optional expression or numerical value on the

way of the expression. Please change the bit count as follows in that case. (y is made

8 bits of terminal here.) In such case, please change the bit count as follows. (Here,

y is assumed to be 8-bit terminal.)

 if operation is used when only a part of an arithmetic expression is changed

according to the condition. if operation assumes the expression1 or expression2 to

be the value. For example, when the smaller of a and b is transferred to the

terminal x, it is described as follows.

 Additionally, there are ++ and -- operations to a register which is a memory

element. ++ increments the value of a register by 1, and -- decrements the value of a

register by 1. The reason these operators are limited to the register is that as for

the register, since the timing of the value being reflected rises at the next clock, it

can operate correctly even if the result using the value of the register is transferred

to the register, however when an operation result using the value of a terminal is

transferred to the same terminal, a loop circuit which consists of only combination

circuits is generated, and the circuit operation is not performed correctly. When this

operator is used as an expression, the two ways of prefix and postfix are available.

 In case of the prefix, the value of the original register is assumed as the value of

the expression, and the register is added or subtracted afterward.

 In this example, the value of register r is transferred to terminal w.

 In case of the prefix, the result of the addition or the subtraction is assumed as

the value of the expression, the result is transferred to the register. In this example,

 y = --q;

 w = r++;

 x = if(a<b) a else b;

 y = 8'(12);

19

the value of register q-1 is transferred to terminal y.

 The operation can be also described independently as an action.

 In this case, the value of register s is decremented by 1.

 Using the parentheses { }, it is possible to make a compound statement which

consists of multiple statements. The compound statement includes the following

types.

 { } : All the statements in a compound statement are executed at the

same time.

 When x is 0, it transfers 1 to terminal y, and 2 to terminal z respectively at the

same time.

 seq { } : It describes a sequence block to execute 1 clock each in sequence.

It can describe only as a processing of the function. Each statement

constructs a pipeline. That is, when the next start-up was activated

before the executed statement is finished, the subsequent processing

starts an execution without waiting the precedent processing finished.

 When foo is called, 1, 2, and 3 are transferred to terminal a in sequence.

 Please prepare the following example as a text file named tut2.nsl.

List 5.1: tut2

func foo seq {

 a=1;

 a=2;

 a=3;

}

if(x==0) {

 y=1;

 z=2;

}

 s--;

20

 Example tut2 lines the descriptions up in a little bit unkind order. Before reading

ahead, please think of what kind of result will come out.

 It is hinted that each statement of the compound statement is all executed at the

same time. The description order of the statements is not related to the execution

state.

 This circuit is compiled with NSL CORE to execute the simulation.

 This operation produces a file of VerilogHDL called tut2.v.

 Next, it is compiled with Icarus Verilog.

 Then, execute it.

> iverilog -o tut2.vvp tut2.v

> nsl2vl tut2.nsl -verisim2 -target tut2

declare tut2 simulation { }

module tut2 {

 reg count[5]=0;

 wire x[5],y[5];

 any {

 count < 10 : {

 _display("x=%d,y=%d,count=%d",x,y,count);

 count := x;

 y = x + 1;

 x = count + 1;

 }

 count >= 10: _finish("End");

 }

}

21

 Since it is all executed at the same time in the compound statement, which is not

related to the description order, the transfer to x and y, and the transfer to count

are caused at the same time. However, the value of the register changes at the

rising point of the next clock, so the change occurs 1 clock later than x. 2 of the line

of which count is 0 appear, which is because the reset signal has got in this circuit,

and count will remain 0 during the reset activated.

 It is possible to transfer the values to multiple terminals and registers together

by the bit-concatenated operation of the left-hand side .{}.

 { terminal1, terminal2, ... } = value ;

 { register1, register2, ... } := value ;

 The right-hand side is assumed to be the value corresponding to the integer value,

or the concatenated bit number of the left-hand side.

> vvp tut2.vvp

VCD info: dumpfile tut2.vcd opened for output.

x= 1,y= 2,count= 0

x= 1,y= 2,count= 0

x= 2,y= 3,count= 1

x= 3,y= 4,count= 2

x= 4,y= 5,count= 3

x= 5,y= 6,count= 4

x= 6,y= 7,count= 5

x= 7,y= 8,count= 6

x= 8,y= 9,count= 7

x= 9,y=10,count= 8

x=10,y=11,count= 9

End

22

Chapter 6 Function (control terminal) and
circuit with argument 6

 NSL has a syntax which calls the hardware function as function and executes it. A

function name can be referred as a control terminal in NSL. While hazard ('bx) is

given to the normal data signal when it is not being transferred, the control

terminal is 1 in the clock where the function was called and is 0 during not being

called. So, as a control system signal, it can be also used as the signal which has to

be 0 when it is not set. There are 3 types such as the internal function (control

internal terminal) to control inside the module, the incoming function (control input

terminal) which is controlled from outside of the module, and the departure

function (control output terminal) which issues a control outside the module. A

dummy argument and a return value can be defined to each function (control

terminal). Differing from the software, the dummy argument and the return value

will be a terminal of the hardware. So the terminal to become a dummy argument

has declared beforehand before a declaration of the function (control terminal). In

the declaration of the function (control terminal), the function (control terminal)

name and the terminal name to becomes a dummy argument, and the terminal

name to return the return value if necessary are shown. (The dummy argument and

return value may be omitted.)

 In a departure function where the self-module outputs, it does not describe action

in the module because the processing is performed in an external module. However,

an action of the departure function of the submodule can be described in the parent

module.

 Definition of internal function

 Definition of incoming function

 Definition of departure function

func_out function name(argument output terminal list) : return value input

terminal ;

func_in function name(argument input terminal list) : return value output

terminal ;

func_self function name(argument internal terminal list) : return value terminal ;

23

 An action when the function was called is described in func statement.

 The syntax acceptable as an execution statement can be all described in an action

of the function. A value of the function is effective only within the clock which called

the function.

 seq statement, which is a compound statement can be described only as an

execution statement of the function, and performs a stepwise execution in sequence.

When only a started clock is effective for itself, and the function (control pin) also

uses a return value of the function in the case seq statement continues moving when,

attention is necessary for the thing from which the value of anything but a start

clock can't be received. Even when seq statement is continuing to operate, the

function (control terminal) itself is effective only in the clock activated, and please

note that the value other than the activated clock cannot be received when a return

value of the function is used. When an operation result processed by multiple clocks

is used, please store the operation result in a register, and create a function

separately which reads out the value. (It is convenient to have created a function

together to return the operation completion status.)

 The following example is a logic circuit using an internal function. Please prepare

this circuit as a text file of the name as tut3.nsl. Please prepare this circuit as a

text file named tut3.nsl.

List 6.1: tut3

input a,b;

output ret;

func_in do_calc(a,b);

func_in get_value(): ret;

func function name action

24

 _time is a built-in variable which has a simulation time as a value. Since the

simulation time is counted at both the rise and the fall of the clock, please note that

it does not necessarily correspond to the time of a logical circuit which operates at

the rise of the clock. (When a matching of _time is performed with the comparison

operator ==, there is a possibility not to match.)

 This circuit is compiled with NSL CORE to simulate.

 This operation creates a file of VerilogHDL called tut3.v.

 Next, it is compiled with Icarus Verilog.

 Then, execute it.

> vvp tut3.vvp

VCD info: dumpfile tut3.vcd opened for output.

Value = 4

> iverilog -o tut3.vvp tut3.v

> nsl2vl tut3.nsl -verisim2 -target tut3

declare tut3 simulation { }

module tut3 {

 wire value[8], ret[8];

 func_self start(value) : ret;

 if(_time>=100) _finish("Value = %d",start(1));

 func start {

 return (value + 3);

 }

}

25

Chapter 7 Order execution, repetition
processing circuit by while and for

 A sequence block to perform order execution can be defined to a processing of the

function. In the sequence block, the described execution statement is executed in

increments of 1 clock in sequence. In the sequence block, while statement and for

statement are prepared to describe the processing repeatedly.

 A sequence block is described in the type of seq { operation statement string }. An

operation statement string is the one where multiple operation statements are lined

up. In a sequence block in the function, the first operation statement is executed in

the clock which called the sequence block. The subsequent operation statement is

executed in increments of 1 clock in sequence basically. The sequential execution of

the operation statement can perform the call of procedure (proc), the execution of

for and while, and the procedural control by goto, and the execution order is

changed at this time.

 The following example shows a module where the internal function calls a

sequence block, executes it in sequence. Using register count as a counter, when

this value has become just 100, the internal function is called, and the counter

value is indicated in the sequence block of the internal function.

List 7.1: tut13

declare tut13 simulation { }

module tut13 {

 reg count[8] = 0;

 wire value[8];

 func_self start(value);

 count++;

 if(count==100) start(count);

 func start seq {

 _display("Hello World: value = %d, count = %d", value, count);

 _display("count = %d", count);

 _display("count = %d", count);

 _finish("bye: count = %d", count);

 }

}

26

 This circuit is compiled with NSL CORE to simulate it.

 This operation creates a file of VerilogHDL called tut13.v.

 Next, it is compiled with Icarus Verilog.

 Then, execute it.

 Please pay attention to the fact that the argument when calling the internal

function has become equal to the value of count indicated by the first operation

statement indicated in the sequence block, and the value of count has increased one

by one in the subsequent operation statements. Thus, the operation can be easily

described to execute the processing in increments of 1 clock in sequence.

 while executes an execution statement in increments of 1 clock in sequence while

the expression in the parentheses is not 0. The completion judgment of loop is

performed prior to an execution of the execution statement. So, an escape from loop

will be performed after the completion judgment became false (0).

 An example where while is used for tut4 is shown. The register count and the

terminal value to be a dummy argument are defined, and moreover, the value of the

dummy argument is specified to the control internal terminal start, which is

 while(count<loop) {

 _display("loop = %d, count = %d", loop, count);

 }

> vvp tut13.vvp

VCD info: dumpfile tut13.vcd opened for output.

Hello World: value = 100, count = 100

count = 101

count = 102

bye: count = 103

> iverilog -o tut13.vvp tut13.v

> nsl2vl tut13.nsl -verisim2 -target tut13

27

defined.

List 7.2: tut4

 In this circuit, when the value of count has become 100, it calls the internal

function start taking 110 as an actual argument. The value of count is transferred

to the dummy argument value, and activates start in the same clock. The processing

to be executed when start was activated is described as the executable statement of

func. In the example, the sequence block is activated, and the transfer to the

register of loop is executed by the start-up clock of start. Next, when the value of

count is smaller than loop, it starts _display statement where while statement gives

a message output. When the value of count has become equal to or larger than loop,

while is finished, and _finish is executed.

The reason the dummy argument of the internal function start is retransferred to

the register once is that although the value of the dummy argument which is a

terminal is effective only for a clock called, while performs executions in multiple

clocks, so the condition of while is necessary to be judged by the value of the

register.

module tut4 {

 reg count[8] = 0;

 wire value[8];

 func_self start(value);

 count++;

 if(count==100) start(110);

 func start seq {

 reg loop[8]=0;

 loop:=value;

 while(count<loop) {

 _display("loop = %d, count = %d", loop, count);

 }

 _finish("bye: count = %d", count);

 }

}

declare tut4 simulation { }

28

 This circuit is compiled with NSL CORE to simulate it.

 This operation creates a file of VerilogHDL called tut4.v.

Next, it is compiled with Icarus Verilog.

 Then, execute it.

 Parallel processing and procedural processing are operating in parallel in this

circuit. It includes the processing which increments count register, the conditional

operation by if statement, and the procedural processing by the sequence block of

func statement. start control of func statement is started by an execution statement

of if statement, and after that, executes the operation of seq block one by one. In the

hardware, all the processing usually operates at the same time in parallel, so please

note that differing from a programming language, even if start control was called,

the original circuit called will not be finished.

 A cautious person might have a question that the last count is 111. The reason

consists in the implementation method of while. The following step is to synthesize

while.

> vvp tut4.vvp

VCD info: dumpfile tut4.vcd opened for output.

loop = 110, count = 101

loop = 110, count = 102

loop = 110, count = 103

loop = 110, count = 104

loop = 110, count = 105

loop = 110, count = 106

loop = 110, count = 107

loop = 110, count = 108

loop = 110, count = 109

bye: count = 111

> iverilog -o tut4.vvp tut4.v

> nsl2vl tut4.nsl -verisim2 -target tut4

29

1. The arithmetic to evaluate the conditional expression is synthesized. When the

value of the expression is 0, goto statement to proceed on to the next processing

of while block is synthesized.

2. The processing in while block is synthesized in sequence. When the first

processing is not procedure, goto statement and label, it performs a synthesis to

execute an evaluation of the expression and the first statement at the same

time.

3. goto statement to return to the evaluation of the expression is synthesized.

When the last statement in a block are not procedure, goto statement and label,

a synthesis to execute the last statement and goto statement to the evaluation

of the expression at the same time is performed.

 In example tut4, count < loop will be a conditional expression. When the value of

count has become 110, the conditional expression becomes false, goes through while,

and proceeds on to the next statement. Since the execution of the next statement

(_finish(), here) is started 1 clock later, the value of count has changed to 111.

Waiting until the conditional expression becomes false is based on the language

specification, and the timing cannot be closed up any more.

 When you want to make the description compact using a loop processing, but to

close up the timing strictly, please use for statement in enumeration type shown in

the following example (tut5).

List 7.3: tut5

declare tut5 simulation { }

module tut5 {

 reg count[8] = 0;

 func_self start();

 count++;

 if(count==100) start();

 func start seq {

 reg loop[8];

 for(loop:=0,9) {

 _display("loop = %d, count = %d", loop, count);

 }

 _finish("bye: count = %d", count);

 }

 }

30

 As for for statement in enumeration type, the statement in a block is executed by

incrementing or decrementing by 1 by a factor of the number of the numerical

value which specified the value of the register variable. Since the loop is finished

when the variable has just reached the final value, the clock for judgment becomes

unnecessary, and the next statement can be executed 1 clock earlier being different

from while statement, etc. which finishes a loop after the condition has become

false. Only an integer value can be specified to the range of the variable.

Supposing the variable range is loop:=9,0, it enumerates in reverse order from 9.

 The type similar to C is prepared for the designer accustomed to for statement of

C language.

 The expression 1 is executed before the start of a loop, when the expression 2 is

true, the execution statement is executed in sequence, and the expression 3 is

executed after that. The expression 1 and the expression 3 can specify multiple

for(expression1; expression2; expression3) { execution statement }

loop = 8, count = 109

loop = 9, count = 110

bye: count = 111

> nsl2vl tut5.nsl -verisim2 -target tut5

> iverilog -otut5.vvp tut5.v

> vvp tut5.vvp

VCD info: dumpfile tut5.vcd opened for output.

loop = 0, count = 101

loop = 1, count = 102

loop = 2, count = 103

loop = 3, count = 104

loop = 4, count = 105

loop = 5, count = 106

loop = 6, count = 107

loop = 7, count = 108

31

execution statements at the same time by a parallel block. As for the evaluation of

the loop, while it escapes from a loop after the conditional expression becomes false

like while, it can escape from a loop 1 clock earlier than while in the typical

example (tut6) because only when the expression 3 is in case of the type of register

++ or register--, it has synthesized in order to evaluate a condition evaluation in the

end of the loop using the value after the expression 3 was changed.

List 7.4: tut6

 Execute the simulation.

declare tut6 simulation { }

module tut6 {

 reg count[8] = 0;

 wire value[8];

 func_self start(value);

 count++;

 if(count==100) start(5);

 func start seq {

 reg loop[8]=0,lend[8]=0;

 for({loop:=0;lend:=value;};loop<lend; loop++) {

 _display("loop = %d, count = %d", loop, count);

 }

 _finish("bye: count = %d", count);

 }

}

32

 In the example tut6, the loop is controlled using the argument of the internal

function start. Since the argument of the internal function is given to the terminal,

it is necessary to re-receive it to the register once when being used in a statement in

which an operation by multiple clocks is performed like for statement. In this

example, in the head of for statement, the value of the dummy argument value is

transferred to the register lend as well as the loop variable loop is initialized.

> nsl2vl tut6.nsl -verisim2 -target tut6

> iverilog -otut6.vvp tut6.v

> vvp tut6.vvp

VCD info: dumpfile tut6.vcd opened for output.

loop = 0, count = 101

loop = 1, count = 102

loop = 2, count = 103

loop = 3, count = 104

loop = 4, count = 105

bye: count = 106

33

Chapter 8 Hierarchical structure

 Govern by dividing. This is the beaten track for developing large-scale hardware.

A hierarchical structure is used invariably for circuit development in a practical

scale. The advantage of hierarchical structure is an improvement in modular

performance. A design in high modular performance is not only high in development

efficiency but also improves the maintainability.

 A circuit of NSL is called a module, and the module can have other modules as

component. The other modules read in a module are called submodule.

 When a submodule is used as a component, it is necessary to have declared

declare statement beforehand which indicated the input/output relation. Even if

there is no module statement itself of a submodule, it is possible to compile with

NSL. Of course, all the modules have to be defined when achieving it as a circuit,

but NSL compiler uses declare statement as prototype statement for a division

compilation.

 NSL has another structure as the component by which the structure is abstracted.

The structure has to have been defined beforehand using struct statement as well

as declare statement.

1. declare statement: It defines the input/output of a module. And the attribute of

the module has interface and simulation. The former shows that all the

input/output pins of the module are defined with declare including the clock

signal, and the latter means that this module is for a logic simulation, and does

not develop to a real circuit.

 The definition other than module name may be omitted when there is no

counterpart.

2. struct statement: It defines the bit allocation of a structure. Differing from the

structure of C language, a type is not specified to the declaration of a structure.

It is because the user is to determine to use the bit allocation of a structure for

a register or a terminal, and there also are some cases where the same

declare module name module attribute {

 definition of input/output pin

 definition of incoming function

 definition of departure function

}

34

structure is used for the both. In C language, the type is nothing more than the

information of a size which is occupied on the memory, however the register

and terminal of NSL are completely different as an entity, so it was decided not

to include the type in the definition of a structure. A semicolon is necessary in

the back to declare a structure name. Although primarily, there is no need for

this semicolon in the present language specification, it is introduced in the

language specification for later extension.

 When using submodule and structure as a component in the module, it is defined

as follows.

1. Submodule: A submodule is described as submodule name instance

name[multiplicity] ; and the multiplicity may be omitted.

2. Structure: The structure declares as structure name type structure instance

name = default value ;. The type is the register type (reg) or the terminal type

(wire). A default value can be set in the register type. The setting of a default

value may be omitted.

 The example which uses submodule and structure will be rather complicated

necessarily. Please read the example carefully. tut7 is an example of an addition in

8 bits using two of the 4-bit full adder module fadd4. It uses a structure to break

down 8-bit signal into two 4-bit signals.

List 8.1: tut7

struct structure name {

 member name1[bit number];

 member name2[bit number];

} ;

35

declare tut7 simulation {}

declare fadd4 {

 input a[4];

 input b[4];

 input ci;

 output q[4];

 output c;

 output o;

 func_in ex(a,b,ci) : q;

}

struct byte_nibble {

36

 The structure byte_nibble defines 8-bit structure which consists of two 4-bit data.

The tut7 module generates two structure instances, the register type count and the

terminal type res. count is initialized to 0, and incremented by 1 every clock. Please

note that the addition is performed to whole structure (i.e. 8 bits). When the value

of count is larger than 60, an addition is executed using two full adders. The value

of count is broken down into hi and lo using the member of the structure, and used

for calling a full adder. The carry from low-order 4 bits is put in the carry input of

the high-order adder, and the result of the respective adders is transferred to the

member of the terminal type structure res. These calculation results and the

overflow output of the high-order adder are shown as calculation results. In NSL, a

 hi[4];

 lo[4];

} ;

module tut7 {

 byte_nibble reg count = 0 ;

 fadd4 sm[2];

 count++;

 if(count>60) {

 byte_nibble wire res;

 res.lo=sm[0].ex(count.lo,count.lo,0);

 res.hi=sm[1].ex(count.hi,count.hi,sm[0].c);

 _display("count:%d, res:%d, ovf:%d", count, res ,sm[1].o);

 }

 if(count==70) _finish("bye");

}

module fadd4 {

 func ex {

 wire qs[4],qe[2];

 qs = {0b0,3'(a)} + {0b0,3'(b)} + 4'(ci);

 qe = (2'(a[3])+2'(b[3])+2'(qs[3]));

 c = qe[1];

 o = qe[1] ^ qs[3];

 return {qe[0],3'(qs)};

 }

}

37

numerical value is treated as an unsigned binary number, so even if an overflow

was generated, the sign is not seen as minus. However, thinking it in the notation of

two’s complement of 8 bits, it may be understood that it has become a negative

value.

 For overflow calculation, the 4-bit full adder fadd4 separates low-order 3-bit

calculation and MSB calculation. To get the carry, MSB is calculated with 2 bits. In

addition, the carry and the exclusive OR carrying from the 3rd bit is assumed to be

an overflow.

 Then, execute it. First, VerilogHDL for a simulations is made using NSL CORE.

It is compiled with Icarus Verilog, and the simulation is performed.

 It is understood that the numerical value in which the value of count is doubled

has returned to res. In the notation of two’s complement of 8 bits, it is a positive

number up to 127, and any more number will be a negative. So, the result of 128 or

more has returned a result different from the original sign, and it will be an

overflow. When an operation without sign is performed, overflow is ignored. When

count became 70, two _display statements operate at the same time, so the order of

the two changes by the simulator.

 When you want to refer to a part of the expression with the same bit width as the

terminal and the register declared in the structure as a structure member, you can

> iverilog -otut7.vvp tut7.v

> vvp tut7.vvp

VCD info: dumpfile tut7.vcd opened for output.

count: 61, res:122, ovf:0

count: 62, res:124, ovf:0

count: 63, res:126, ovf:0

count: 64, res:128, ovf:1

count: 65, res:130, ovf:1

count: 66, res:132, ovf:1

count: 67, res:134, ovf:1

count: 68, res:136, ovf:1

count: 69, res:138, ovf:1

count: 70, res:140, ovf:1

bye

> nsl2vl tut7.nsl -verisim2 -target tut7

38

perform a cutout of the target bit by a cast operation.

 For example,

ther is a 16-bit structure declared as above. When you want to take the value of op

member from the 16-bit register opreg using the member name of a structure,

as above, you can refer to the member by casting the expression to the structure in

the form of (structure name)(expression).member name. However, please note that a

cast cannot be used for the left side of a transfer.

 workop = (inst)(opreg).op;

struct inst {

 op[8];

 r1[4];

 r2[4];

} ;

39

Chapter 9 Preprocessor

 NSL has prepared the following as the preprocessor directive.

 Macro definition

#define macro name defined value: Macro is defined. Macro name

described in the source code is converted into the defined value. When a

macro name is used in an identifier, it is surrounded in %%.

#undef macro name: Macro definition is cancelled.

 Conditional compilation

#ifdef macro name: In case of macro defined, it compiles the source code

up to after #endif or #else.

#ifndef macro name: In case of macro undefined, it compiles the source

code up to after #endif or #else.

#if numerical value: In case of all except for 0, it compiles the source

code up to after #endif or #else.

#else : In the opposite condition of #ifdef/#ifndef, it compiles the source

code up to after #endif or #else.

#endif : Stop of a conditional compilation.

 Include

#include <file name> : It searches the file name from the path of

NSL_INCLUDE environment variable, and inserts it as a source code.

#include "file name" : It searches the file name from the current

directory or the path specified at compilation, and inserts it as a source

code.

 The output of nslpp.exe, which is a preprocessor is compatible with the

preprocessor of C language. So, when you want to use a further advanced macro,

you can also use gcc, etc. as the frontend of NSL.

40

Chapter 10 Label and goto statement

 In the software world, excluding goto statement will make a program visible. But,

goto statement is needed in some cases to adjust the timing which cannot be ironed

out only by a structured mechanism such as for and while in the hardware design

where a space of even 1 clock is grudged. goto statement of NSL is used for

controlling a sequence block. goto statement is used also for the state transition of a

state machine to be mentioned later, but both are completely different things.

 A label is needed for the destination to which an execution control is switched by

goto statement. The label is declared in the head part of a sequence block in

label_name statement, and a switching destination is defined in the form of label

name:.

 The following example will meet a certain condition using goto statement. Here,

the statement of else is executed when the result judged by if statement is false, so

it can take in the value in the same clock. The circuit in this form can be used for

meeting an external block with an unclear output timing, etc.

 In a processing of the function ex, the processing is suspended during condition

being false, and the register value takes in the value when it became true in this

example. Please note that this function cannot use return statement to return the

value from the function because it operates with multiple clocks using a sequence

block. return statement can be described, however the means for receiving of the

side which called is limited because the value returns at the timing different from

the clock at which the function was called.

 The following example calls a submodule of a division circuit. When the division

circuit reported a result by the departure function, the value is indicated.

List 10.1: tut8

func ex seq {

 label_name l1;

 reg value;

 l1: if(!condition) goto l1;

 else value:=something;

}

41

declare tut8 simulation {}

#define N 10

#define M 8

declare divu_%N%_%M% {

input A[N],B[M];

output Q[N],R[M];

42

func_in divu_do(A,B);

func_out divu_done(Q,R);

func_out divu_error;

}

module divu_%N%_%M% {

reg QB[M], QQ[N+M];

wire sub_i1[N+1], sub_i2[N], minus;

func_self sub(sub_i1,sub_i2);

func sub {

wire sub_o[N+1];

 sub_o = {sub_i1} - {0b0,sub_i2};

 minus=sub_o[N];

}

func divu_do {

 if(B==M'b0) divu_error();

 else seq {

 reg bitcount[M];

 for({bitcount:=0; QB:=B; QQ:={M'b0,A};} ;

 bitcount < N ; bitcount++) {

 if(sub(QQ[N+M-1:M-1],(N'(QB)<<(N-M))).minus) {

 QQ := (QQ << 1) ;

 }

 else {

 QQ := {(sub_o << 1)[N:N-M],(QQ[N-2:0]<<1)} | (N+M)'b1;

 }

 }

 divu_done(QQ[N-1:0],QQ[(N+M-1):N]);

 }

 }

}

module tut8 {

 divu_%N%_%M% divid;

 reg a[N], b[M];

43

 Then, execute it. It will make VerilogHDL for the simulation using NSL CORE.

It is compiled with Icarus Verilog to simulate it.

 Without using goto statement, it can perform the processing similar to tut8 using

a function statement of a departure function of the submodule. In this example, this

> iverilog -o tut8.vvp tut8.v

> vvp tut8.vvp

VCD info: dumpfile tut8.vcd opened for output.

start 911/ 18

result = 50 : 11

> nsl2vl tut8.nsl -verisim2 -target tut8

 func_self go();

 reg count[16]=0;

 count++;

 if(count == 10) go();

 if(divid.divu_error) _finish("divid error");

 func go seq {

 label_name wait_res;

 {

 a:=N'(_random);

 b:=M'(_random);

 }

 {

 divid.divu_do(a,b);

 _display("start %d/%d",a,b);

 }

 wait_res:

 if(!divid.divu_done) goto wait_res;

 else _display("result = %d : %d",divid.Q, divid.R);

 _finish();

 }

}

44

way may be easier to understand than using goto statement because it is structural.

Like this example, most of goto statements can be replaced by describing a function

appropriately. The designer should consider carefully about any possible method

without using goto statement, not making the circuit description poorly-visible.

List 10.2: tut8_altt

module tut8_alt {

 divu_%N%_%M% divid;

 reg a[N], b[M];

 func_self go();

 reg count[16]=0;

 count++;

 if(count == 10) go();

 if(divid.divu_error) _finish("divid error");

 func go seq {

 {

 a:=N'(_random);

 b:=M'(_random);

 }

 {

 divid.divu_do(a,b);

 _display("start %d/%d",a,b);

 }

 }

 func divid.divu_done seq {

 _display("result = %d : %d",divid.Q, divid.R);

 _finish();

 }

}

45

Chapter 11 Procedure

 In many cases, a complicated logic circuit implements a pipeline control and a

status control. NSL has the syntax to show these control structures openly. The one

is procedure. When being called, the procedure (proc) is started up synchronously

with the clock, and calls another procedure, or continues to operate until a finish is

declared by itself (execution of finish()). A register type dummy argument can be

specified to a declaration of the procedure. The procedure is started up after the

value specified at the time of calling the procedure was transferred to the dummy

argument.

 When it is started up by another procedure (or, itself) in the clock in which the

procedure is finished, it will be started up again at the next clock while executing a

processing to finish it. With this, a pipeline operation can be described smoothly.

 One of the main uses of the procedure is to describe a pipeline stage. In this case,

a pipeline register is specified to the dummy argument. A circuit can be structured

assuming the operating state of a procedure as the state of a state transition

machine. The state can be transitioned by calling another procedure. It is used also

for making it perform the processing in bulk separately in the function. When a

procedure call is described at the top level (not below other blocks and if statement)

of a sequence block, the sequence block suspends the execution until the procedure

is finished. In the clock where the procedure is finished, the statement next to the

procedure call is executed at the same time of the ending process of the procedure.

 A procedure is described as a declaration of component.

 Dummy argument may be omitted. (Parenthesis is necessary also in the case.)

 When calling a procedure,

it is described as above. When another procedure is called during a procedure, the

procedure at the calling side is finished. To finish it explicitly,

finish();

procedure name(actual argument1, actual argument2, ...) ;

proc_name procedure name(dummy argument1, dummy argument2, ...) ;

46

it is described as above. The above form is available only in the procedure, and

finishes the described procedure itself. The form below can be described also from

outside the procedure, and makes the specified procedure finish.

 A sequence block can be utilized also in a procedure. The following example uses a

procedure instead of the internal function of the above-mentioned example tut13.

As for the sequence block in a procedure, please note that the first action statement

is executed when an execution of the procedure was started, not the time when the

procedure was called. (In NSL, while an execution of the function is started at the

clock at which the function was called, the procedure starts an execution at the

clock next to being called.)

 The description of the example is shown.

List 11.1: tut14

 This circuit is compiled with NSL CORE to simulate it.

> nsl2vl tut14.nsl -verisim2 -target tut14

declare tut14 simulation { }

module tut14 {

 reg count[8] = 0;

 reg value[8];

 proc_name start(value);

 count++;

 if(count==100) start(count);

 if(count==200) _finish("countX = %d", count);

 proc start seq {

 _display("Hello World: value = %d, count1 = %d", value, count);

 _display("count2 = %d", count);

 _display("count3 = %d", count);

 finish;

 }

}

Procedure name.finish();

47

This operation makes a file of VerilogHDL called tut14.v.

Next, it is compiled with Icarus Verilog.

 Then, execute it.

 The procedure is started from the clock next to being called, and the argument is

passed by the register, so the execution result indicates that the argument becomes

the value smaller than the count value by 1 as shown above.

 Usually, when another procedure is executed from the procedure, the high-order

procedure called is finished and the action is transferred, however, as an exception,

when the top-level action statement of a sequence block (not in other blocks) calls a

procedure in a sequence block in the procedure, the called procedure is treated as a

subroutine, and the following action statement of the sequence block is executed

after the subroutine was finished.

 Look at the following example.

List 11.2: tut15

> vvp tut14.vvp

VCD info: dumpfile tut14.vcd opened for output.

Hello World: value = 100, count1 = 101

count2 = 102

count3 = 103

countX = 200

> iverilog -o tut14.vvp tut14.v

48

 The two procedures of start and subproc are defined to this example. start

procedure calls subproc from the sequence block.

 This circuit is compiled with NSL CORE to simulate it.

With this operation, a file of VerilogHDL called tut15.v is made

Next, it is compiled with Icarus Verilog.

> nsl2vl tut15.nsl -verisim2 -target tut15

 finish;

 }

 proc subproc seq {

 _display("sub:count1 = %d", count);

 _display("sub:count2 = %d", count);

 _display("sub:count3 = %d", count);

 finish;

 }

}

declare tut15 simulation { }

module tut15 {

 reg count[8] = 0;

 reg value[8];

 proc_name start(value), subproc();

 count++;

 if(count==100) start(count);

 if(count==200) _finish("countX = %d", count);

 proc start seq {

 _display("count1 = %d", count);

 _display("count2 = %d", count);

 subproc();

 _display("count3 = %d", count);

49

 Then, execute it.

 After executing up to Count2, subproc is called at the clock of count==103 as a

subroutine. Since the call of proc is generated at the clock next to being called, the

execution clock of the subroutine will start from count==104. The last execution

statement of the subroutine procedure is executed at the same clock as the action

statement just after the subroutine called in a sequence block of the call source.

Here, since finish of subproc to become a subroutine is executed at the same time of

_display of the call source, the value of count3 has become 107.

 Next, it shows how to use the procedure without using a sequence.

 The following example is a module for a small 8-bit CPU and its simulation on

which 5 instructions are mounted.

List11.3: tut9

> vvp tut15.vvp

VCD info: dumpfile tut15.vcd opened for output.

count1 = 101

count2 = 102

sub:count1 = 104

sub:count2 = 105

sub:count3 = 106

count3 = 107

countX = 200

> iverilog -o tut15.vvp tut15.v

50

#define ADD 0

#define LD 1

#define ST 2

#define JMP 3

#define JZ 4

declare cpu {

 inout data[8];

 output address[8];

 func_out mread(address) : data;

 func_out mwrite(address,data);

}

module cpu {

 reg count[8]=0, pc[8], op[8], im[8], acc[8]=0;

 proc_name ift(pc), imm(op), exe(im);

 any {

 count <=20: count++;

 count == 10: ift(0);

 }

 proc ift {

 imm(mread(pc++));

 }

 proc imm {

 exe(mread(pc++));

51

 The module CPU will be a circuit of CPU, and tut9 will be the simulation module.

 }

 proc exe {

 wire nextpc[8];

 any {

 op == ADD: {acc:=acc+im; _display("ADD %d",im);}

 op == LD: {acc:=mread(im); _display("LD %d",im);}

 op == ST: {mwrite(im,acc); _display("ST %d",im);}

 }

 any {

 op == JMP: {nextpc=im; _display("JMP %d",im);}

 (op == JZ) && (acc == 0): {nextpc=im; _display("JZ %d",im);}

 else: nextpc=pc;

 }

 ift(nextpc);

 }

}

declare tut9 simulation {}

module tut9 {

 mem mainmem[256][8] = {ADD, 2, JZ, 10, ST, 32, ADD, -1, JMP, 2, ST, 255};

 cpu tut9cpu;

 func tut9cpu.mread {

 _display("READ: ADDRESS:%x, DATA:%x", tut9cpu.address,

mainmem[tut9cpu.address]);

 return mainmem[tut9cpu.address];

 }

 func tut9cpu.mwrite {

 _display("WRITE: ADDRESS:%x, DATA:%x", tut9cpu.address,

tut9cpu.data);

 mainmem[tut9cpu.address] := tut9cpu.data;

 if(tut9cpu.address == 255) _finish("SIM STOP");

 }

}

52

 The CPU has 8-bit bidirectional data bus and 8-bit address bus, and performs

input and output with the memory put outside the CPU by the departure function of

read (mread) and write (mwrite) of the memory. The CPU has 3 procedure (ift, imm,

exe), and specifies 8-bit dummy argument registers (pc, op, im) respectively. These

procedures will be the procedures which will perform instruction read, immediate

value read, and instruction execution.

 The simulation module tut9 defines the CPU as instance tut9cpu, and has the

main memory mainmem in which the instructions were written beforehand as a

component. It performs a behavior response as a memory to two departure functions

of the CPU.

 The CPU begins an instruction execution from the address 0 when the internal

counter register count has reached 10.

 This circuit is compiled with NSL CORE to simulate it.

 After that, it compiles and simulates with Icarus Verilog.

>nsl2vl tut9.nsl -verisim2 -target tut9

53

> iverilog -otut9.vvp tut9.v

> vvp tut9.vvp

VCD info: dumpfile tut9.vcd opened for output.

READ: ADDRESS:00, DATA:00

READ: ADDRESS:01, DATA:02

ADD 2

READ: ADDRESS:02, DATA:04

READ: ADDRESS:03, DATA:0a

READ: ADDRESS:04, DATA:02

READ: ADDRESS:05, DATA:20

WRITE: ADDRESS:20, DATA:02

ST 32

READ: ADDRESS:06, DATA:00

READ: ADDRESS:07, DATA:ff

ADD 255

READ: ADDRESS:08, DATA:03

READ: ADDRESS:09, DATA:02

JMP 2

READ: ADDRESS:02, DATA:04

READ: ADDRESS:03, DATA:0a

54

 Check the operating status with a waveform viewer.

 As shown in the figure, 3 procedures of ift, imm, and exe are started up in

sequence, and the instructions are being executed according to the procedure.

> gtkwave tut9.vcd

READ: ADDRESS:04, DATA:02

READ: ADDRESS:05, DATA:20

WRITE: ADDRESS:20, DATA:01

ST 32

READ: ADDRESS:06, DATA:00

READ: ADDRESS:07, DATA:ff

ADD 255

READ: ADDRESS:08, DATA:03

READ: ADDRESS:09, DATA:02

JMP 2

READ: ADDRESS:02, DATA:04

READ: ADDRESS:03, DATA:0a

JZ 10

READ: ADDRESS:0a, DATA:02

READ: ADDRESS:0b, DATA:ff

SIM STOP

WRITE: ADDRESS:ff, DATA:00

ST 255

55

Chapter 12 State machine and state transition

 In logical design, there may be the cases where it wants to make a circuit with a

static state variable, not a procedure which is started when being called. NSL has

the syntax to make a state machine corresponding to such case. The state variable

is initialized when being reset, and rewritten into the state of the transition

destination by a state transition. The state machine can be defined as a component

in a module and a compound statement. Please note that the state machine defined

by a compound statement will be a local state machine only in the compound

statement. The definition of a state machine is given by the following syntax. The

leading state will be the initial state of the state machine.

 After the state machine was defined, it describes the action corresponding to each

state. The action is described using state statement.

 goto statement is used when it is transitioned to other state in state statement.

Please note that it is completely different from goto statement in a sequence block.

Next, an example of state machine is shown

List 12.1: tut10

goto state name ;

state state name execution statement

state_name state name1, state name2, state name3, ... ;

56

 Please note that the state variable is static, and a state statement performs an

execution when the state variable has become in the state specified by the state

variable after the conditions of execution were completed, and. For example, when a

state machine was created in a function and a procedure, the execution is not

performed even if the state statement was described, unless its function or

procedure is operating even if the state variable is identical.

 Then, execute it. It creates VerilogHDL for the simulation using NSL CORE.

>nsl2vl tut10.nsl -verisim2 -target tut10

 _display("in state1 %d",c1);

 }

 state state2 {

 reg c2[2]=0;

 if(c2++ == 3) goto state3;

 _display("in state2 %d",c2);

 }

 state state3 {

 reg c3[2]=0;

 if(c3++ == 3) {goto state1; _finish();}

 _display("in state3 %d",c3);

 }

 }

declare tut10 simulation {}

module tut10 {

 state_name state1, state2, state3;

 state state1 {

 reg c1[2]=0;

 if(c1++ == 3) goto state2;

57

 It compiles and simulates with Icarus Verilog.

 In the simulation, the value of 0 of state1 has appeared on the 2 lines first

because the clock is input also when being reset and a circuit without reset signal

(_display statement, etc.) is operating.

 There is a point to which you should pay attention on use of a state machine. A

state variable is initialized at a reset, but not done during usual operation, so it is

necessary to describe goto statement to transition it to the initial state before the

procedure finished when you want to return it to the initial state every call of the

procedure.

in state1 1

in state1 2

in state1 3

in state2 0

in state2 1

in state2 2

in state2 3

in state3 0

in state3 1

in state3 2

in state3 3

> iverilog -otut10.vvp tut10.v

> vvp tut10.vvp

VCD info: dumpfile tut10.vcd opened for output.

in state1 0

in state1 0

58

Chapter 13 Integer variable and temp variable,
and structure development

 Many syntaxes of NSL correspond to the hardware to be generated on a

one-to-one basis. This is to offer a visible language to the hardware designer.

However, the syntax to develop a structure can be used conveniently for

compressing the amount of a description when a number of the similar structures

are generated.

NSL provides integer variable, temp variable, and structure development syntax for

the structure development. These syntaxes are evaluated when being compiled, and

the value is determined. Please note that the evaluation is performed in the order of

description of NSL statements, and it will be unrelated to the order of operations

when being executed.

 An integer variable (integer) can be used for the part where an integer can be

described. Also, it can use the arithmetic expression between integer variables, and

of integer.

 As a special case, when an expression consisting of integers or integer variables

is specified to the condition of if statement, only one of either true or false execution

statement is generated when being compiled. It makes a finer conditional control

possible than a conditional compilation by the preprocessor, however please note

that a decline in readability will be brought when it is used a lot.

 A temp variable (variable) has a width, and is used just like a terminal. However,

differing from a terminal, multiple transmissions are possible at the clock and a

partial transfer can be performed. It is because a temp variable automatically

creates a new terminal, and perform the necessary operation every time the

transmission appears. The evaluation of the temp variable is performed in the order

of description, and the transfer to a terminal after development is executed in

parallel.

 generate statement is available for generating a circuit using integer variable

and temp variable.

Variable variable name[bit width] ;

Integer variable name;

59

 The following example generates a pseudorandom number generation circuit by

cyclic code using generate syntax. The value to each bit of temp variable v is set

using generate statement, and the generated result is transferred to register r

together.

generate (integer variable=initial value ; integer variable expression ; integer

variable update expression) execution statement ;

60

List 13.1: tut11

declare glfsr {

 input seed[16];

 output q[16];

 func_in set_seed(seed);

 func_in next_rand : q;

}

module glfsr {

 reg r[16] = 0x39a5;

 variable v[16];

 integer i;

 func next_rand {

 generate (i=0;i<15;i++) {

 if((i == 13) || (i == 12) || (i == 10)) v[i] = r[i+1] ^ r[0];

 else v[i] = r[i+1];

 }

 v[15] = r[0];

 r:=v;

 return r;

 }

 func set_seed r:=seed;

}

declare tut11 simulation {}

module tut11 {

 glfsr rmod;

 reg count[16]=0;

 count++;

 any {

 3'(count) == 7: {

 _display("set seed:%d",count+0x9876);

 rmod.set_seed(count+0x9876);

 }

 count==10: _finish("finished");

 else: _display("random generate %d", rmod.next_rand());

 }

}

61

 Executing this example will be as follows. It creates VerilogHDL for the

simulations using NSL CORE.

 It compiles and simulates with Icarus Verilog.

> iverilog -otut11.vvp tut11.v

> vvp tut11.vvp

VCD info: dumpfile tut11.vcd opened for output.

random generate 14757

random generate 14757

random generate 43218

random generate 21609

random generate 40500

random generate 20250

random generate 10125

random generate 42950

set seed:39037

random generate 39037

random generate 63550

finished

>nsl2vl tut11.nsl -verisim2 -target tut11

62

Chapter 14 Parameter

 The parameter includes integer parameter (param_int) and character string

parameter (param_str). The parameter is used in the two methods in NSL. The first

is how to use it as control variable when structure development is performed. In

case of using it as a control variable, the value is set to the parameter. In this case,

the parameter is defined outside the module, and it is treated as a global variable.

 Comparison operation can be performed in a conditional expression of if

statement using a parameter name. The operator identical with the integer variable

is used for a comparison of the integer parameter. Match (==) and mismatch (!=) are

available for comparison of character string.

 As other use, it includes parameter setting to the module generated by the

languages (VerilogHDL and VHDL) other than NSL. When a module in other

languages is used as instance, it is necessary to give a specified parameter to those

modules in some cases. Therefore, it can declare a parameter in declare statement

to specify the prototype of a module in other languages.

 In instance declaration of a submodule, setting a value to a parameter passes the

parameter to VerilogHDL or VHDL generated.

param_int parameter name ;

param_str parameter name ;

param_str MODE = "SIM";

module cpu {

 if(MODE == "SIM") {

 _display("PC: %4X", pc);

 }

param_int parameter name = integer;

param_str parameter name = character string;

63

 An integer parameter with the initial value set, and a character string parameter

can be used for a conditional expression of structure development of if s tatement as

integer or character string.

 The following description is an example in which a clock wiring is made using the

clock module of FPGA (DCM) and the global buffer (BUFG) of Xilinx. There is a

parameter which must be given to DCM by the user, and it is set from NSL. This

example is an example exclusively for logic synthesis, and some of the modules have

only declare, no simulation execution part, so it cannot be confirmed by execution.

However, please make it a reference for the description method.

List 14.1: tut12

module name submodule instance name(parameter name=value, parameter

name=value);

64

 dcm2.PSINCDEC =0;

 buff.I = dcm2.CLKDV;

 target.m_clock = buff.O;

 target.p_reset = p_reset;

}

declare DCM interface {

 param_int CLKDV_DIVIDE;

 param_str CLK_FEEDBACK;

 input RST, PSINCDEC, PSEN, PSCLK, CLKIN, CLKFB;

 output PSDONE, CLK0, CLK90, CLK180, CLK270,

 CLK2X, CLK2X180, CLKDV, CLKFX, CLKFX180,

 LOCKED, STATUS[8];

}

declare BUFG interface {

 input I;

 output O;

}

declare sample {

 input samplein;

 output sampleout;

}

declare tut12 {}

module tut12 {

 BUFG buff;

 DCM dcm2(CLKDV_DIVIDE=4, CLK_FEEDBACK="1X");

 sample target;

 dcm2.RST = p_reset;

 dcm2.CLKIN = m_clock;

 dcm2.CLKFB = dcm2.CLK0;

 dcm2.PSEN = 0;

 dcm2.PSCLK = 0;

65

Chapter 15 Example of floating-point adder

 It shows an example of the floating point adder assuming IEEE754 floating point

form as its input. This adder has a pipeline structure, and can output an operation

result every 1 clock.

List 15.1: fpadd

66

/*

 IEEE 754 type Single Precision Floating Point Pipeline Adder

 Copyright (c) 2011 Naohiko Shimizu, IP ARCH, Inc.

 This circuit is provided only for demonstration of NSL description.

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

/*

 Adder interface declaration.

 We will have two inputs 'a' and 'b' those must be normalized

 single precision IEEE754 numbers.

 To start the circuit, you can invoke 'exe' with two arguments.

 When the circuit finish the calculation, it will send the result

 with done signal.

 The circuit is completely pipelined.

 And you can invoke it in every cycle.

*/

67

declare Ieee754SpAdd {

 input a[32];

 input b[32];

 output result[32];

 func_in exe(a,b);

 func_out done(result);

}

/*

 The struct Ieee754Sp defines single precision format of IEEE754.

 It has Sign bit, 8bit Exponent, 23bit Mantissa.

*/

struct Ieee754Sp {

 Sign;

 Exponent[8];

 Mantissa[23];

};

/*

 We will use Barrel Shifter for pre-shift the mantissa.

 Though the required length is not 32bit, we will use 32bit shifter.

 Logic synthesizer will do the compaction of unused net.

*/

declare BarrelShift {

 input a[32];

 input sa[8];

 output f[32];

 func_in exe(a,sa):f;

}

/*

 After the mantissa calculation, we need suppress leading zeros

 of the result.

 LeadingZeroShift provide the function.

 It will return the result and shifted amount.

*/

68

declare LeadingZeroShift {

 input a[32];

 output shamt[8];

 output f[32];

 func_in exe(a):f;

}

/*

 Barrel Shifter body.

 We will decode each bit of shift amount and

 determine to shift the contents or not.

*/

module BarrelShift {

 wire t0[32],t1[32],t2[32],t3[32],t4[32];

 func exe {

 if(sa[0]) t0=a>>1;

 else t0=a;

 if(sa[1]) t1=t0>>2;

 else t1=t0;

 if(sa[2]) t2=t1>>4;

 else t2=t1;

 if(sa[3]) t3=t2>>8;

 else t3=t2;

 if(sa[4]) t4=t3>>16;

 else t4=t3;

 if(sa[7:5]==0) return t4;

 else return 0;

 }

}

/*

 Leading Zero Shifter body.

 We will evaluate continuous zero from MSB to LSB.

*/

module LeadingZeroShift {

 wire t0[32],t1[32],t2[32],t3[32],t4[32];

 wire a0,a1,a2,a3,a4;

69

 func exe {

 if(a[31:16]==0) { a4 = 1; t0 = a<<16; }

 else { a4 = 0; t0=a; }

 if(t0[31:24]==0) { a3 = 1; t1 = t0<<8; }

 else { a3 = 0; t1=t0; }

 if(t1[31:28]==0) { a2 = 1; t2 = t1<<4; }

 else { a2 = 0; t2=t1; }

 if(t2[31:30]==0) { a1 = 1; t3 = t2<<2; }

 else { a1 = 0; t3=t2; }

 if(t3[31]==0) { a0 = 1; t4 = t3<<1; }

 else { a0 = 0; t4=t3; }

 shamt = 8'({a4,a3,a2,a1,a0});

 return t4;

 }

}

/*

 Floating Adder body.

 It has 4 stages 'stageA' through 'stageD.'

 At 'stageD' we will get the result.

 exe: invoke the circuit and calculate exponents differences.

 stageA: pre-shift for adder operation.

 stageB: Mantissa addition.

 stageC: Leading zero shift.

 stageD: Return result.

*/

module Ieee754SpAdd {

/*

 Resources defenitions.

*/

 BarrelShift bshft;

 LeadingZeroShift lzshft;

/*

 stageA resources

*/

70

 reg Aexdf[8];

 Ieee754Sp reg x, y;

 proc_name stageA(Aexdf, x, y);

/*

 stageB resources

*/

 reg Bm1[32], Bm2[32], Bs1, Bs2, Bexp[8];

 proc_name stageB(Bm1, Bm2, Bs1, Bs2, Bexp);

 wire s1, s2, x1[32], x2[32], r1[32];

 func_self madd(s1, s2, x1, x2) : r1;

/*

 stageC resources

*/

 reg Cm[32], Cs, Cexp[8];

 proc_name stageC(Cm, Cs, Cexp);

/*

 stageD resources

*/

 Ieee754Sp reg z;

 proc_name stageD(z);

/*

 func exe(a,b) is the starting point of this adder.

*/

 func exe {

 wire wdiff[9];

/*

 In IEEE 754, the exponent is biased binary.

 Therefore, negative value of subtraction will

 show that 'b.Exponent > a.Exponent.'

71

 We will select pre-shift argument depending on the result.

*/

 wdiff = 9'((Ieee754Sp)(a).Exponent) - 9'((Ieee754Sp)(b).Exponent);

 if(wdiff[8]) {

 stageA(-wdiff[7:0], b, a);

 }

 else {

 stageA(wdiff[7:0], a, b);

 }

 }

/*

 proc_name stageA(Aexdf, x, y);

 We will pre-shift 'y' for addition.

 Because IEEE754 suppress MSB's '1' in mantissa, we will add it here.

 But if the exponent part is zero, it may be un-normalized value.

 Therefore, we will not add '1'.

*/

 proc stageA {

 wire xmsb[3],ymsb[3];

 if(x.Exponent==0)

 xmsb=0;

 else

 xmsb=3'b1;

 if(y.Exponent==0)

 ymsb=0;

 else

 ymsb=3'b1;

 stageB({xmsb,x.Mantissa,6'b0},

 bshft.exe({xmsb,y.Mantissa,6'b0},Aexdf),

 x.Sign,

 y.Sign,

 x.Exponent);

 }

72

/*

 proc_name stageB(Bm1, Bm2, Bs1, Bs2, Bexp);

 Add two mantissa values.

 In IEEE754, the mantissa does not have sign it self.

 Therefore, if the addition shows negative value,

 we will make 2's complement of it.

*/

/*

 s1,s2 is sign bit for x1,x2.

 When the value is negative, we will make 2's complement.

*/

 func madd {

 return (32#s1^x1) + 32'(s1) + (32#s2^x2) + 32'(s2);

 }

 proc stageB {

 wire m3[32];

 m3 = madd(Bs1,Bs2,Bm1,Bm2);

 if(m3[31])

 stageC(-m3, m3[31], Bexp);

 else

 stageC(m3, m3[31], Bexp);

 }

/*

 proc_name stageC(Cm, Cs, Cexp);

 We now have mantissa 'Cm', sign 'Cs', exponent 'Cexp.'

 But we need to suppress leading zero of mantissa for normalize.

 If the result of mantissa calculation was 0, we will return 0.

 Or if the exponent was 0, it shows un-normalized value,

 then we will not do the leading zero shift.

*/

 proc stageC {

 if(Cm==0)

 stageD(0);

73

 else if(Cexp==0)

 stageD({Cs,Cexp,Cm[28:6]});

 else

 stageD({Cs,

 8'(Cexp - lzshft.shamt + 1),

 lzshft.exe({Cm[30:0], 1'b0})[30:8]

 });

 }

/*

 proc_name stageD(z);

 return ack signal and the result from adder.

*/

 proc stageD {

 done(z);

 finish;

 }

}

74

Chapter 16 Summary of Tutorial

 I have explained the language specification of NSL with the examples. NSL is

compact and visible, and the designer will achieve a new circuit, which is just

wanted to be realized including a small CPU to be described in less than 50 lines. In

addition, the existing resources of VerilogHDL and VHDL can be applied just as

they are to develop the circuits, therefore the investments to date will never be

thrown away.

 Please design wonderfully using the next generation hardware design language

NSL.

NSL Tutorial
Version v1.0.0 Issued on September 13, 2011

Version v1.0.1 Issued on October 15, 2015

Writer Naohiko Shimizu

Editor Naohiko Shimizu Akihiro Sawamura

Publisher IP ARCH, Inc.

Print Overtone Corporation

(C) 2011- Naohiko Shimizu

